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Abstract. Global Navigation Satellite System-Reflectometry (GNSS-R) in soil moisture retrieval, the 

traditional method mainly includes linear regression and exponential regression methods. To address the 

defects of conventional methods such as poor prediction accuracy and sizeable computational effort, the 

Elman neural network with dynamic learning features is introduced. An Elman neural network-based soil 

moisture retrieval method is proposed to establish a multi-parameter retrieval model. Finally, the model is 

trained to validate the feasibility of this model. The results indicate that the soil moisture values estimated by 

the GNSS-R soil moisture retrieval method based on the Elman neural network have minor errors with the 

actual measured soil moisture values. Based on this model, the coefficient of determination (R
2
) is 0.8988, 

and the Root Mean Square Error (RMSE) of soil moisture is 0.0207. When compared to the traditional linear 

regression model, the soil moisture values predicted by this method are more accurate and closer to the 

measured soil moisture values, demonstrating the method’s validity and reliability. 

Keywords: Global Navigation Satellite System-Reflectometry (GNSS-R), Elman neural network, soil 

moisture retrieval 

1. Introduction 

Soil moisture is an essential component of the ecosystem water vapor cycle [1]. Having accurate and 

stable soil moisture information plays a vital role in water resource management, climate change, agricultural 

production, and environmental testing in a region or globally [2-6]. Global Navigation Satellite System-

reflectometry (GNSS-R) has the characteristics of wide signal coverage and strong penetration, which is a 

microwave remote sensing technology developed from the Global Navigation Satellite System (GNSS).The 

GNSS signal reflected from the ground surface carries information about the physical characteristics of the 

surface. By analyzing and studying reflected signal, some physical features of the surface can be extracted, 

such as soil moisture [7]. 

At present, a lot of research has been done on soil moisture retrieval using GNSS-R. Larson et al [8-10] 

proved that the Signal-to-Noise Ratio (SNR) showed a linear relationship between the amplitude, delay, and 

phase of the three characteristic parameters and soil moisture through the Plate Boundary Observatory (PBO) 

data in the United States, which can be used for obtaining soil moisture. Chew et al [11-12] investigated the 

relationship between the three parameters individually and soil moisture on this basis. The study showed the 

strongest correlation between the phase and soil moisture and established an empirical model for obtaining the 

soil moisture in the bare soil surface layer. Minsi Ao et al [13-14] conducted a comparative analysis test 

between SNR observations and soil moisture, showing a certain exponential relationship between the SNR 

phase and soil moisture. Jizhong Wu et al [15] addressed the parameter estimation problem of soil moisture 

and improved the prediction accuracy of the linear regression model by enhancing the reflected signal 

parameters accordingly. 

The above studies have shown that SNR observations can effectively predict soil moisture by linear 

regression models. However, surface factors such as vegetation coverage and surrounding environment will 

generally affect GNSS reflected signal. The accuracy of soil moisture predicted by the linear regression model 

will inevitably be affected [16]. 
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Artificial intelligence algorithms such as machine learning are becoming increasingly popular for remote 

sensing applications. They can build nonlinear relationships between data inputs and outputs and build 

complex regression models [17-19]. The Elman neural network is a representative dynamic recurrent neural 

network, which adds a takeover layer based on the feed-forward neural network. It is used to memorize and 

store the output data of the previous  moment, ensure the full use of historical data, and promote the network 

to adapt to the dynamic information characteristics of the data. 

This paper treats GNSS-R soil moisture retrieval as a nonlinear problem, taking into account the dynamic 

change characteristics of soil moisture observation data, introducing the Elman neural network with dynamic 

learning characteristics into GNSS-R soil moisture retrieval. A multi-parameter soil moisture retrieval model 

was established using SNR amplitude, phase, Normalized Difference Vegetation Index (NDVI), temperature 

and the satellite altitude angle as input terms and soil moisture as output term. It aims to restrain the influence 

of vegetation and the environment and improve the prediction accuracy of soil moisture model. 

2. Theoretical Background 

2.1. Retrieve Soil Moisture 

GNSS-R is a remote sensing technique that estimates and retrieves the physical parameters of the earth’s 

surface by processing GNSS signals reflected from the surface. When performing remote sensing surveys, 

GNSS receivers receive not only the direct signal, but also GNSS signal reflected from reflective surfaces. 

Due to the multipath effect, the signals of two paths are superimposed at the antenna to produce the 

interference signal, as shown in Fig.1. At the same time, the GNSS receiver will also record the signal strength, 

that is, SNR observation value. The relationship between the reflected signal, the direct signal and the SNR 

observation value of the interference signal is as follows:  

2 2 2
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SNR represents the interference signal’s SNR observation value, Ad stands the direct signal’s the amplitude, 

Am stands the reflected signal’s the amplitude, and  is the phase difference between the reflected signal and 

the direct signal. 

 

Fig. 1: GNSS signal superposition phenomenon. 

Only the reflected signal carries the relevant information of the soil in the interference signal, and the 

direct signal component is much larger than the reflected signal component. Thus, using a low order 

polynomial fit  remove the direct signal component and extract the reflected signal component, the reflected 

signal is expressed as [20]: 
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where SNRm represents the reflected signal’s SNR observation value, Am stands amplitude of the reflected 

signal, h is Antenna height, λ is GNSS signal wavelength,   is the satellite altitude angle , and  is the phase.  

Then, the Lomb-Scargle algorithm is used to get the reflected signal’s frequency and then calculate the 

amplitude and phase of the reflected signal according to the principle of least squares. The two characteristic 

725



parameters, amplitude and phase, were strongly correlated with soil moisture, and then a one-dimensional 

linear regression statistical model was developed to estimate soil moisture, respectively. 

2.2. Elman Neural Network 

Elman neural network is a dynamic recurrent neural network proposed by J. L. Elman [21], which is 

composed of an input layer, a hidden layer, a takeover layer and an output layer, as seen in Fig.2. Compared 

with the feed-forward neural networks, this network adds a takeover layer to the hidden layer, which is used to 

store the output of the hidden layer of the previous  moment and return to the network’s input layer to be fed 

into the hidden layer again at the next moment. This connecting the hidden and takeover layers gives the 

neural network a certain memory function. It can make the most of data, increase the network’s ability to 

process dynamic information, and have stronger computing capabilities, thereby achieving the purpose of 

dynamic modeling. 

In Fig.2, ut represents the input vector, y(t) represents the output vector, x(t) represents the hidden layer 

vector，xc(t) represents the takeover layer vector. w1, w2 and w3 stand weights of each layer. 

 

Fig. 2: Elman neural network structure. 

3. Methodlogy 

3.1. Elman Neural Network for GNSS-R Soil Moisture Retrieval Models 

In this paper, when constructing the GNSS-R soil moisture retrieval model, apart from the two 

characteristic parameters of reflected signal amplitude and phase. Three other characteristic parameters related 

to soil moisture retrieval are also considered: temperature, Normalized Difference Vegetation Index (NDVI) 

and the satellite altitude angle, all of which directly or indirectly relate to soil moisture. 

In the process of retrieving soil moisture by GNSS-R, vegetation coverage is inevitable, and vegetation 

will cause attenuation to the surface reflected signal and affect the SNR observation of the reflected signal. 

Hence, it is necessary to make corrections for the influence of vegetation. To a certain extent, NDVI can 

effectively reflect the vegetation growth and cover and characterize the vegetation information. In a certain 

area, the higher the NDVI value, the greater the attenuation of the reflected signal from the surface, and the 

GNSS receiver can receive the less reflected signal. 

Temperature also affects soil moisture. Generally, there is a certain trend between temperature changes 

and soil moisture changes, with an increase in temperature decreasing soil moisture and vice versa; 

temperature changes also cause SNR observations. GNSS-R technology retrieve soil moisture uses the 

interference effect of the reflected signal and the direct signal. When the satellite altitude angle is different, the 

interference phenomenon also presents different states. The smaller the satellite altitude angle, the more 

pronounced the interference phenomenon and the more accurate the estimated soil moisture will be at this 

point

Table 1: Indicators and Calculation Formulae for Error Analysis 

Evaluation indicators The coefficient of determination (R
2
) The Root Mean Square Error (RMSE) 

Calculation formula 
SSR

SST
  

2

1

1 n

predi
y y

n 
  
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According to the above analysis, this paper takes the amplitude and phase of the reflected signal, 

temperature, NDVI and the satellite altitude angle as the model’s input targets, and the measured soil moisture 

value as the model’s input target, to construct the Elman neural network-based soil moisture retrieval model. 

The soil moisture retrieval process is shown in Fig.3. After determining the characteristic observation 

parameters, establish a soil moisture retrieval model, train on the data set to select the optimal retrieval model, 

and perform the model evaluation.  

R
2
 and RMSE are used to evaluate the prediction capability and reliability of this model. The closer R

2
 

gets to 1, the more reliable the model. The closer the RMSE is to 0, the stronger the model’s fit and the higher 

the prediction accuracy. The above indicators and their calculation formulae are shown in Table 1. 

 

Fig. 3: Flowchart of the soil moisture retrieval algorithm. 

In Table I, SSR represents the regression sum of squares, SST represents the total sum of squares, n is the 

number of test samples, y and ypred represent the measured soil moisture values and predicted soil moisture 

values, respectively. 

Different neural network structures can lead to differences in predicted results. When constructing an 

Elman neural network model, it is essential to determine the number of network layers, neurons in each layer, 

and the activation function. The input/output layer is determined by the input/output feature parameters. The 

number of neurons in the input layer is 5, the number of neurons in the output layer is 1, and the takeover 

layer is set the same as the hidden layer. In order to establish the optimal Elman neural network model, it is 

essential to select the suitable activation function, the number of hidden layer and the number of hidden layer 

neurons. 

3.2. Elman Neural Network Structure 

When the number of network layers and the number of neurons at each layer are different, the efficiency 

and accuracy of the Elman neural network predictions will also vary greatly. The number of neurons is too 

small, which will cause the network to acquire insufficient information to get the best training result. With too 

many neurons in the hidden layer, the network’s functionality is improved, and the accuracy is higher. Still, 

the number of network training iterations increases and there is a possibility of overfitting. The number of 

hidden layers is also not fixed and requires constant experimentation to determine the optimal number of 

layers. This study randomly selected 30 sets of data from the sample data as a validation set to debug the 

network structure. Using the RMSE of the soil moisture prediction as a verification standard to measure the 

model’s accuracy. When the RMSE is the smallest, the Elman neural network structure can be determined. 

Fig.4 shows the variation of RMSE with the number of hidden layers and the number of neurons. 

As shown in Fig.4, when the hidden layer is one layer, the RMSE of soil moisture gradually reduces with 

the number of neurons, and reaches the minimum at 14 neurons. Meanwhile, when the number of neurons is 

fixed and select three hidden layers, the RMSE of soil moisture is smallest, and the prediction accuracy is 

higher. When the number of hidden layers is three and the number of neurons in the hidden layer is 14, the 
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RMSE of soil moisture reaches the minimum, so the structure of the Elman neural network model can be 

determined. 

 

Fig. 4: RMSE of the predicted soil moisture with different number of hidden layers and neurons. 

3.3. Select Activation Function 

The activation function is a function that runs on the neuron and is responsible for mirroring the input of 

the neuron to the output. It introduces a nonlinear factor to the neuron, increases the neural network’s learning 

ability to approximate any nonlinear function, and models the arbitrary relationship between input and output. 

The ability and efficiency of the Elman neural network training and predicting sample data are related to 

the network structure and closely associated with the selected activation function. The commonly used 

activation functions of the Elman neural network mainly include the Sigmoid function, Tanh function, ReLU 

function, etc. Since there are differences in the performance and efficiency of each function, the corresponding 

activation functions need to be selected for different practical problems. Therefore, to optimize the 

performance and efficiency of the Elman neural network retrieval model, given the current practical issues, 

the predicted results under different activation functions are compared and analyzed. 

The principle of the comparative analysis method is followed to ensure that the influencing factors are 

single. This study chooses to keep the learning rate, expectation error, and other influencing parameters 

consistent. According to the previous study, the hidden layer is three layers with 14 neurons in each layer. 

Different activation functions build the Elman neural network model and train it on the validation set. Table II 

shows R
2
 and RMSE of the Elman neural network model under different activation functions. 

Table 2 shows that the Elman neural network model has the largest R
2 
and the smallest RMSE when the 

ReLU function is chosen with the remaining influencing parameters fixed. It indicates that the Elman neural 

network retrieval model constructed by the ReLU function as the activation function has the best performance 

and effect. Therefore, this study selects the ReLU function as the activation function to build the Elman neural 

network soil moisture retrieval model. 

Table 2: Analysis Of Predicted Results of the Elman Neural Network Model 

activation function R2 RMSE 

Sigmoid function 0.8261 0.0289 

Tanh function 0.8189 0.0261 

ReLU function 0.8486 0.0226 

 

4. Experiment and Results 

4.1. DATASelect Activation Function 

The experimental data in this study are all from a strawberry picking garden in Chang ' a District, Xi 'an ,  

Shaanxi Province, with the site located at 34°3' 40'' N,108°53' 47'' E. When the satellite altitude Angle is 

between 5° and 25°, the interference phenomenon is most significant, so this study selects the sample data of 

the satellite altitude angle in this interval, and eliminates invalid values and abnormal values. 

The numerical values and units in the sample data are not the same. Before the model training, the sample 

data should be normalized to all the data in the same dimension. The standardization method used in this 
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study, that is, deviation standardization, linear transformation of the original data. The function expression for 

processing is as follows: 

  * ( min) / (max min)x x                                 

x is the original data, x* is the standardized data, max is the maximum value and min is the minimum in 

all sample data. After the normalization process, the sample data are processed to the range of 0~1, which is 

convenient for comprehensive comparison and evaluation and accelerates the convergence speed of the Elman 

neural network model. 

After the above processing, 710 sets of sample data are finally selected. One set of sample data contains 6 

observations. Using the random sampling method, 659 groups were selected as the training set and 51 groups 

as the test set. The training and test sets are mutually exclusive, and there is no intersection between them. 

Then 30 sets are randomly selected from the training set as the validation set, which is used to experimentally 

test and debug network parameters to determine the optimal network structure. 

4.2. Results 

After using the above data set for model training, to study the model’s predictive ability, the model test is 

performed on the test set to obtain the predicted result, and the result is compared with the actual measured 

soil moisture value. Verify the accuracy of the Elman neural network model and perform the model evaluation. 

Fig.5 shows the comparison relationship between the soil moisture values predicted by the model and the 

measured soil moisture values. The RMSE value of this model is 0.0207. Fig.6 shows the correlation between 

the soil moisture values predicted by the model and the measured soil moisture values with an R
2 
value of 

0.8988 for this model. 

As can be seen from Fig.5 and Fig.6, the predicted result of the Elman model is closer to the actual 

measured soil moisture value. Although there are still differences in the local ranges of the predicted values, 

the overall values are very close to the measured values, with a high degree of approximation, minor errors, 

and good agreement. This result indicates that the Elman neural network retrieval model can estimate soil 

moisture with high accuracy and reliability. 

 

Fig. 5: Comparison between the predicted value of the Elman model and the measured soil moisture value. 

 

Fig. 6: Correlation between the predicted value of the Elman model and the measured soil moisture value. 
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To further verify the superiority of the Elman model, explain the model’s predictive ability. Under the 

condition of using the same data set, this study also compares with two traditional linear regression methods, 

the amplitude linear model and the phase linear model. Fig.7 shows the comparison between the predicted 

value of the three models and the measured value. Table III3 shows RMSE and R
2
 of the three models. 

As can be seen from Fig.7, the predicted value of the three models is basically in line with expectations. 

Still, it is evident from Table III that the amplitude linear model has the worst predictive result and the most 

significant deviation from the measured value. The phase linear model has a better predictive effect than the 

amplitude linear model. The Elman neural network model has the best predictive effect. The predicted soil 

moisture value is more consistent with the measured soil moisture value, and the fitting result is good, which 

is significantly better than the two linear regression models. This result indicates that the Elman neural 

network model can be used for GNSS-R soil moisture estimation. It is more reliable and more accurate than 

the traditional model, which can evidence the prediction accuracy of soil moisture to some extent. 

Table 3: Error Evaluation of the Three Models 

model R
2
 RMSE 

Elman neural network model 0.8988 0.0207 

Amplitude linear model 0.6089 0.0418 

Phase linear model 0.6784 0.0357 

 

 

Fig. 7: Comparison between the predicted value of three models and the measured soil moisture value. 
 

5. Conclusion 

In this paper, a soil moisture retrieval model based on the Elman neural network with dynamic learning 

characteristics is introduced to address the shortcomings of the traditional linear regression model when 

performing GNSS-R soil moisture retrieval. First, the soil moisture retrieval characteristic quantities are 

determined, and a multi-parameter soil moisture retrieval model is established. Secondly, the validation set 

determined the optimal Elman neural network structure experimentally. Finally, the model was tested for 

validation and compared with the traditional linear regression statistical model. The result shows that the 

predicted result of the Elman neural network model is closer to the measured soil moisture value. The R
2
 

between the predicted and measured values is 0.8988, and the RMSE is 0.0207. Compared with the traditional 

linear regression model, the predicted value of this model is closer to the measured value with a minor error, 

which proves the validity and reliability of the Elman neural network model to predict soil moisture. 
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